Nonparametric tests of independence between random vectors

R. Beran1 M. Bilodeau2 P. Lafaye de Micheaux3

1Department of Statistics
University of California Davis

2Département de Mathématiques et de Statistique
Université de Montréal

3Laboratoire Jean Kuntzman
Université Pierre Mendès France, Grenoble

Swiss Statistics Meeting, Nov 16 (2006)
Outline of the talk

1. Goals, tools and notations
2. Test of independence: non serial case
3. The Bootstrap
4. Bootstrap Validity
5. Examples
Goal 1

Construct a test of mutual independence between the random vectors $X^{(1)} \in \mathbb{R}^{d_1}, \ldots, X^{(p)} \in \mathbb{R}^{d_p}$.

Let P be the joint law of $X = (X^{(j)})_{j=1}^p$ and $P^{(j)}$ be the marginal law of $X^{(j)}$.

Sample = the data : X_1, \ldots, X_n.
Example: the asthma case

Families i ($i = 1, \ldots, n$) with 3 persons with asthma disease.

$$X_i = \begin{pmatrix} X^{(1)} \\ X^{(2)} \\ X^{(3)} \end{pmatrix} = \begin{pmatrix} \text{Phenotype for the father} \\ \text{Phenotype for the mother} \\ \text{Phenotype for the child} \end{pmatrix}$$

- Dependence between (father, child) and/or (mother, child) solely implies genetic factors.
- Dependence between (father, mother) implies environmental factors.
Goal 2

Let Y_1, Y_2, \ldots be a stationary sequence of random vectors in \mathbb{R}^q. Construct a serial test of mutual independence between the Y_i's.

This problem, with the overlapping difficulty, is treated similarly as the previous case by letting $X_i = (Y_i, \ldots, Y_{i+p-1}) \in \mathbb{R}^{pq}$ and $X_i^{(j)} = Y_{i+j-1}; i = 1, \ldots, n-p+1; j = 1, \ldots, p$.
For all \((s^{(j)}, t^{(j)}) \in S_{d_j} \times \mathbb{R}\), define the half-space \(H\) by
\[
H(s^{(j)}, t^{(j)}) = \left\{ x^{(j)} \in \mathbb{R}^{d_j} : \langle s^{(j)}, x^{(j)} \rangle \leq t^{(j)} \right\}.
\]

The collection of half-spaces in \(\mathbb{R}^{d_j}\) separating probabilities is
\[
\mathcal{F}^{(d_j)} = \left\{ H(s^{(j)}, t^{(j)}) : (s^{(j)}, t^{(j)}) \in S_{d_j} \times \mathbb{R} \right\}
\]

\[\mathcal{F} = \mathcal{F}^{(d_1)} \times \ldots \times \mathcal{F}^{(d_p)}.\]
How to characterize independence

Define, for all \((s^{(j)}, t^{(j)}) \in S_d \times \mathbb{R}\),

\[
\nu_A((s^{(j)}, t^{(j)})_{j=1}^p) = \sum_{B \subset A} (-1)^{|A\setminus B|} P(\times_{j=1}^p H^B(s^{(j)}, t^{(j)})) \cdot \prod_{j \in A \setminus B} P^{(j)}(H(s^{(j)}, t^{(j)})),
\]

and

\[
H^B(s^{(j)}, t^{(j)}) = \begin{cases} H(s^{(j)}, t^{(j)}), & j \in B; \\ \mathbb{R}^{d_j}, & j \notin B. \end{cases}
\]

Proposition

The marginals \(X^{(1)}, \ldots, X^{(p)}\) *are independent if and only if*

\[
\nu_A((s^{(j)}, t^{(j)})_{j=1}^p) = 0, \text{ for all } (H(s^{(j)}, t^{(j)}))_{j=1}^p \in \mathcal{F} \text{ and all } A \subset \{1, \ldots, p\}, |A| > 1.
\]
Case $p = 3$.

$$\nu_{\{1,2\}} = P^{(1,2)} - P^{(1)} P^{(2)}.$$

Then, $\nu_{\{i,j\}} = 0 \Rightarrow X^{(i)} \perp X^{(j)}$, $i, j = 1, 2, 3; i < j$.

$$\nu_{\{1,2,3\}} = P^{(1,2,3)} + 3P^{(1)} P^{(2)} P^{(3)}$$

$$- P^{(1,2)} P^{(3)} - P^{(1,3)} P^{(2)} - P^{(2,3)} P^{(1)} - P^{(1)} P^{(2)} P^{(3)}.$$

Then, $\nu_{\{1,2,3\}} = 0 \Rightarrow \{X^{(1)}, X^{(2)}, X^{(3)}\}$ independent.
Notations and processes used

The processes considered, for $A \subset \{1, \ldots, p\}$, are

$$R_{n,A}((s^{(j)}, t^{(j)})_{j=1}^p) = \sqrt{n} \sum_{B \subset A} (-1)^{|A \setminus B|} \prod_{j=1}^p H_B(s^{(j)}, t^{(j)})$$

where $\prod_{B \subset A} \prod_{j \in A \setminus B} \prod_{P_n \text{ is the empirical law of } X_1, \ldots, X_n \text{ iid and } \prod_{(j) \text{ is the empirical law of } X_1^{(j)}, \ldots, X_n^{(j)} \text{ iid.}}}$
Another process used is

\[
\tilde{R}_{n,A}((s^{(j)}, t^{(j)})_{j=1}^p) = \sqrt{n} \sum_{B \subseteq A} (-1)^{|A \setminus B|} \left(\prod_{j=1}^p H^B(s^{(j)}, t^{(j)}) \right) \prod_{j \in A \setminus B} P^{(j)}(H(s^{(j)}, t^{(j)}))
\]

\[
= \frac{1}{\sqrt{n}} \sum_{i=1}^n \prod_{k \in A} \left[\mathbb{1}\{X_i^{(k)} \in H^{(s^{(k)}, t^{(k)})}\} - P^{(k)}(H(s^{(k)}, t^{(k)})) \right],
\]

from the multinomial formula.
The first theorem

Theorem

If \(X^{(1)}, \ldots, X^{(p)} \) are independent, then

\[
\{ \tilde{R}_{n,A} : A \in \mathcal{I}_p \} \rightsquigarrow \{ R_A : A \in \mathcal{I}_p \},
\]

where \(\rightsquigarrow \) is the weak convergence of Hoffmann-Jørgensen. The processes \(R_A \) are independent Gaussian of mean 0 and autocovariance function \(C_A((s^{(j)}, t^{(j)})_{j=1}^p, (\tilde{s}^{(j)}, \tilde{t}^{(j)})_{j=1}^p) \)

\[
= \prod_{k \in A} \left[P^{(k)}(H(s^{(k)}, t^{(k)}) \cap H(\tilde{s}^{(k)}, \tilde{t}^{(k)})) - P^{(k)}(H(s^{(k)}, t^{(k)})) P^{(k)}(H(\tilde{s}^{(k)}, \tilde{t}^{(k)})) \right].
\]
The processes $R_{n,A}$ et $\tilde{R}_{n,A}$ are asymptotically equivalent.

Theorem

For all $A \in \mathcal{I}_p$, $\| R_{n,A} - \tilde{R}_{n,A} \|_F \to 0$, where convergence is in outer probability.

A critical region for an independence test is obtained by combining Kolmogorov type statistics :

$$\bigcup_{A \in \mathcal{I}_p} \{ \| R_{n,A} \|_F > r_A \}.$$
The asymptotic significance level of the test is

\[\alpha = 1 - \prod_{A \in \mathcal{I}_p} P\{\|R_A\|_F \leq r_A\}. \]

The critical values \(r_A \) can be chosen as the \(\beta \)-quantiles of the law of \(\|R_A\|_F \), where \(\beta = (1 - \alpha)^{1/(2^p - p - 1)} \).

However, the law of \(R_A \) depends on the unknown marginal laws \(P^{(k)} \). The critical values are thus derived from the Bootstrap.
The Bootstrap technique

- The data: X_1, \ldots, X_n
- The statistic $T = T(X_1, \ldots, X_n)$: only one observed value based on the initial sample

- Intensive computer simulation technique
- Several drawing with replacement in the sample

- For $b = 1, \ldots, B$
 - Draw with replacement: $X_1^*(b), \ldots, X_n^*(b)$
 - Compute $T(X_1^*(b), \ldots, X_n^*(b))$
- Estimate the law of T
Bootstrap of $R_{n,A}$

Define the quarter-space semi-metric d_R between two finite collections of probabilities by

$$d_R \left(\left(P^{(j)} \right)_{j=1}^p, \left(Q^{(j)} \right)_{j=1}^p \right) = \sum_{j=1}^p \sup_{H_1, H_2 \in \mathcal{F}(d_j)} | P^{(j)}(H_1 \cap H_2) - Q^{(j)}(H_1 \cap H_2) |. $$

With this semi-metric, the marginal empirical probabilities converge

$$d_R \left(\left(P^{(j)} \right)_{j=1}^p, \left(P^{(j)} \right)_{j=1}^p \right) \overset{P}{\to} 0.$$
Theorem (Bootstrap validity)

Let \((P_n^{(j)})_{j=1}^p, n = 1, 2 \ldots \) be any sequence satisfying

\[
d_R \left((P_n^{(j)})_{j=1}^p, (P^{(j)})_{j=1}^p \right) \rightarrow 0. \tag{1}
\]

If \(X_{n1}, \ldots, X_{nn}\) are iid from \(P_n^{(1)} \times \cdots \times P_n^{(p)}\), \(\hat{P}_n\) is the empirical distribution of \(X_{n1}, \ldots, X_{nn}\) and

\[
R_{n,A}^*((s^{(j)}, t^{(j)})_{j=1}^p) = \sqrt{n} \sum_{B \subset A} \frac{1}{|A\setminus B|} \hat{P}_n(\times_{j=1}^p H^B(s^{(j)}, t^{(j)})) \cdot \prod_{j \in A \setminus B} \hat{P}_n^{(j)}(H(s^{(j)}, t^{(j)})),
\]

then \(\{R_{n,A}^* : A \in \mathcal{I}_p\} \rightsquigarrow \{R_A : A \in \mathcal{I}_p\}\).
The dependogram

- Graphical display giving the $\|R_{n,A}\|_{\mathcal{F}}$ values (vertical bar)
- Star at the height given by the bootstrap approximation to the β-quantile, $\beta = (1 - \alpha)^{1/(2^p - p - 1)}$, of $\|R_A\|_{\mathcal{F}}$
- Subsets such that the vertical bar exceeds this quantile can be flagged for dependent vectors

<table>
<thead>
<tr>
<th>Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

TAB.: Lexicographic order of the subsets for $p = 4$ in the non serial dependogram.
The dependogram

- Graphical display giving the $\|R_{n,A}\|_\mathcal{F}$ values (vertical bar)
- Star at the height given by the bootstrap approximation to the β-quantile, $\beta = (1 - \alpha)^{1/(2^p - p - 1)}$, of $\|R_A\|_\mathcal{F}$
- Subsets such that the vertical bar exceeds this quantile can be flagged for dependent vectors

<table>
<thead>
<tr>
<th>Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Tab.: Lexicographic order of the subsets for $p = 4$ in the non serial dependogram.
The dependogram

- Graphical display giving the $\|R_{n,A}\|_{\mathcal{F}}$ values (vertical bar)
- Star at the height given by the bootstrap approximation to the β-quantile, $\beta = (1 - \alpha)^{1/(2^p - p - 1)}$, of $\|R_A\|_{\mathcal{F}}$
- Subsets such that the vertical bar exceeds this quantile can be flagged for dependent vectors

<table>
<thead>
<tr>
<th>Subsets</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>{1,2}</td>
<td>1</td>
</tr>
<tr>
<td>{1,3}</td>
<td>{1,3}</td>
<td>2</td>
</tr>
<tr>
<td>{1,4}</td>
<td>{1,4}</td>
<td>3</td>
</tr>
<tr>
<td>{2,3}</td>
<td>{2,3}</td>
<td>4</td>
</tr>
<tr>
<td>{2,4}</td>
<td>{2,4}</td>
<td>5</td>
</tr>
<tr>
<td>{3,4}</td>
<td>{3,4}</td>
<td>6</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>{1,2,3}</td>
<td>7</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>{1,2,4}</td>
<td>8</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>{1,3,4}</td>
<td>9</td>
</tr>
<tr>
<td>{2,3,4}</td>
<td>{2,3,4}</td>
<td>10</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>{1,2,3,4}</td>
<td>11</td>
</tr>
</tbody>
</table>

TAB.: Lexicographic order of the subsets for $p = 4$ in the non serial dependogram.
The dependogram

- Graphical display giving the $\|R_{n,A}\|\mathcal{F}$ values (vertical bar)
- Star at the height given by the bootstrap approximation to the β-quantile, $\beta = (1 - \alpha)^{1/(2^p - p - 1)}$, of $\|R_A\|\mathcal{F}$
- Subsets such that the vertical bar exceeds this quantile can be flagged for dependent vectors

<table>
<thead>
<tr>
<th>Subsets</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>{1,3}</td>
<td>{1,4}</td>
<td>{2,3}</td>
<td>{2,4}</td>
<td>{3,4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{1,2,3}</td>
<td>{1,2,4}</td>
<td>{1,2,3,4}</td>
</tr>
<tr>
<td>{1,3}</td>
<td>{1,2}</td>
<td>{1,4}</td>
<td>{2,3}</td>
<td>{3,4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{1,2,3}</td>
<td>{1,2,4}</td>
<td>{1,2,3,4}</td>
</tr>
<tr>
<td>{1,4}</td>
<td>{1,2}</td>
<td>{1,3}</td>
<td>{2,3}</td>
<td>{3,4}</td>
<td>{2,4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{1,2,3}</td>
<td>{1,2,4}</td>
<td>{1,2,3,4}</td>
</tr>
</tbody>
</table>

Tab.: Lexicographic order of the subsets for $p = 4$ in the non serial dependogram.
Dependence among 4 discrete variables

- \(W_1, \ldots, W_6 \) iid with \(W_i, i \in \{1, 3, 4, 6\} \sim \text{Poisson}(1) \) and \(W_i, i \in \{2, 5\} \sim \text{Poisson}(3) \)
- \(X^{(1)} = W_1 + W_2, X^{(2)} = W_2 + W_3, X^{(3)} = W_4 + W_5, \) and \(X^{(4)} = W_5 + W_6 \)
- \((X^{(1)}, X^{(2)})\) independent of the pair \((X^{(3)}, X^{(4)})\) with each pair having a correlation of \(\frac{3}{4}\)

Remark

\[\nu\{1,2,3,4\} = \nu\{1,2\} \cdot \nu\{3,4\} = (P^{(1,2)} - P^{(1)} P^{(2)})(P^{(3,4)} - P^{(3)} P^{(4)}) \]
Dependence among 4 discrete variables

- W_1, \ldots, W_6 iid with $W_i, i \in \{1, 3, 4, 6\} \sim \text{Poisson}(1)$ and $W_i, i \in \{2, 5\} \sim \text{Poisson}(3)$
- $X^{(1)} = W_1 + W_2$, $X^{(2)} = W_2 + W_3$, $X^{(3)} = W_4 + W_5$, and $X^{(4)} = W_5 + W_6$
- $(X^{(1)}, X^{(2)})$ independent of the pair $(X^{(3)}, X^{(4)})$ with each pair having a correlation of $\frac{3}{4}$

Remark

$\nu_{\{1,2,3,4\}} = \nu_{\{1,2\}} \cdot \nu_{\{3,4\}} = (P^{(1,2)} - P^{(1)} P^{(2)})(P^{(3,4)} - P^{(3)} P^{(4)})$
Dependence among 4 discrete variables

- W_1, \ldots, W_6 iid with $W_i, i \in \{1, 3, 4, 6\} \sim \text{Poisson}(1)$ and $W_i, i \in \{2, 5\} \sim \text{Poisson}(3)$
- $X^{(1)} = W_1 + W_2$, $X^{(2)} = W_2 + W_3$, $X^{(3)} = W_4 + W_5$, and $X^{(4)} = W_5 + W_6$
- $(X^{(1)}, X^{(2)})$ independent of the pair $(X^{(3)}, X^{(4)})$ with each pair having a correlation of $\frac{3}{4}$

Remark

$$\nu\{1,2,3,4\} = \nu\{1,2\} \cdot \nu\{3,4\} = (P^{(1,2)} - P^{(1)} P^{(2)})(P^{(3,4)} - P^{(3)} P^{(4)})$$
Dependence among 4 discrete variables

- W_1, \ldots, W_6 iid with $W_i, i \in \{1, 3, 4, 6\} \sim \text{Poisson}(1)$ and $W_i, i \in \{2, 5\} \sim \text{Poisson}(3)$
- $X^{(1)} = W_1 + W_2$, $X^{(2)} = W_2 + W_3$, $X^{(3)} = W_4 + W_5$, and $X^{(4)} = W_5 + W_6$
- $(X^{(1)}, X^{(2)})$ independent of the pair $(X^{(3)}, X^{(4)})$ with each pair having a correlation of $\frac{3}{4}$

Remark

$$\nu\{1,2,3,4\} = \nu\{1,2\}.\nu\{3,4\} = (P^{(1,2)} - P^{(1)}P^{(2)})(P^{(3,4)} - P^{(3)}P^{(4)})$$
Dependence among 4 discrete variables

Fig.: The two structures of dependence are evident in subsets 1 and 6 which correspond, respectively, to the two subsets $A = \{1, 2\}$ and $A = \{3, 4\}$. $n = 100$.

![Dependogram](image)
Consider \(n = 50 \) observations on six variables \(W_i, i = 1, \ldots, 6 \), jointly distributed as a multivariate normal with mean vector 0 and covariance matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & .4 & .5 \\
0 & 0 & 0 & 1 & .1 & .2 \\
0 & 0 & .4 & .1 & 1 & 0 \\
0 & 0 & .5 & .2 & 0 & 1
\end{pmatrix}.
\]

Partition into 3 sub-vectors \(X^{(1)} = (W_1, W_2) \), \(X^{(2)} = (W_3, W_4) \) and \(X^{(3)} = (W_5, W_6) \).
Figure: The dependence between the last two subvectors shows up in the third subset \(A = \{2, 3\} \). \(n = 50 \).
4-dependent variables which are 2-independent and 3-independent

- W is discrete uniform on the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$

\[
\begin{align*}
X^{(1)} &= \mathbb{I}\{W \in \{1, 2, 3, 5\}\}, \\
X^{(2)} &= \mathbb{I}\{W \in \{1, 2, 4, 6\}\}, \\
X^{(3)} &= \mathbb{I}\{W \in \{1, 3, 4, 7\}\}, \\
X^{(4)} &= \mathbb{I}\{W \in \{2, 3, 4, 8\}\}.
\end{align*}
\]

- These four dependent binary variables are 2-independent or pairwise independent; they are also 3-independent.
4-dependent variables which are 2-independent and 3-independent

Fig.: This dependogram identifies the 4-dependence in the last subset $A = \{1, 2, 3, 4\}$. No other dependencies were declared significant. $n = 100$
Serial independence in a binary sequence (0 and 1)

- $W_i = \begin{cases}
0 & \text{with probability 0.2} \\
1 & \text{with probability 0.8}
\end{cases}$ iid
- $Y_i = W_i W_{i+3}, i = 1, \ldots, n - 3$
- Y_i which is dependent at lag 3
Serial independence in a binary sequence (0 and 1)

Fig.: The upper dependogram does not declare any serial dependence in the i.i.d. sequence W_i. The lower dependogram for the sequence Y_i exhibits a serial dependence at lag 3 through the subset 3 corresponding to $A = \{1, 4\}$. The minimal value of $p = 4$ was used. $n = 100$.

![Dependogram](image)
Serial independence in directionnal data

- $U_i \text{i.i.d. } N_2(0, I_2)$
- $W_i = U_i + \sqrt{2}U_{i+1}, i = 1, \ldots, n - 1$ with serial dependence at lag 1.
- $Y_i = W_i/|W_i|$ with serial dependence at lag 1 on the circle.
Serial independence in directionnal data

Fig.: The dependogram for the angular gaussian sequence \(Y_i \) on the circle exhibits a serial dependence at lag 1 through the first subset corresponding to \(A = \{1, 2\} \). \(n = 75 \).
Multinomial formula

Let A be a non empty subset of $\{1, 2, \ldots, p\}$. Then,

$$\sum_{B \subset A} \left(\prod_{i \in B} u^{(i)} \right) \left(\prod_{j \in A \setminus B} v^{(j)} \right) = \prod_{i \in A} \left(u^{(i)} + v^{(i)} \right).$$

